The First Total Synthesis of Natural ()-Tetracycline

Kuniaki Tatsuta,* Takuji Yoshimoto, Hiroki Gunji, Yoshiya Okado, and Masaaki Takahashi *Department of Applied Chemistry, School of Science and Engineering, Waseda University, 3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555*

(Received April 4, 2000; CL-000314)

Natural (-)-tetracycline has been stereoselectively synthesized from D-glucosamine through $[4 + 2]$ cycloaddition and Michael-Dieckmann type reaction.

For almost half a century, tetracycline (**23**) has been wellknown as a major antibiotic from the viewpoint of its unique structural features as well as antibacterial activities.¹ The total synthesis of tetracycline families was initiated by Woodward's 6-demethyl-6-deoxytetracycline synthesis in 1962,² followed by N uxfeldt's terramycin synthesis in 1968, 3 and culminated by Muxfeldt's terramycin synthesis in 1968, 3 and culminated by Stork's 12a-deoxytetracycline synthesis in 1996.⁴ However, all these syntheses have been accomplished only in racemic forms. The total synthesis of natural $(-)$ -tetracycline (23) remained an unanswered challenge, despite the remarkable achievements as described above.

Herein, we describe the first total synthesis of $(-)$ -tetracycline (**23**) from D-glucosamine, which stereospecifically constructs the densely and sensitively functionalized A ring.

From the retrosynthetic perspective (Scheme 1), the tetra-

cyclic structure is expected to be accessible by tandem Michael-Dieckmann type reaction of **10** with **11**. The suitably substituted chiral intermediate **10** would be synthesized by Diels-Alder reaction of the cyclohexenone **8** and the silyloxybutadiene **9**. The regio- and stereoselectivities are established as a consequence of the dienophile geometry according to Gleiter's theory.⁵ Compound **8** could be obtained from **1** through Ferrier reaction of **5**.

As a viable synthetic relay from anhydrotetracycline (**21**) to tetracycline (23) has been reported by Wasserman and Scott⁶ via a two-step hydration at the 5a,6-position, **21** was our first target. A reliable 12a-hydroxylation is required for the synthesis of **21**, although evidence of such hydroxylation has been reported.4,7

The starting 1, which was prepared from D-glucosamine,⁸ was converted into the olefin **2** by selective silylation, oxidation and Wittig olefination (Scheme 2). After de-*O*-silylation of **2**, the resulting alcohol was led to the selenide **3**. ⁹ Treatment of **3** with borane followed by H_2O_2 oxidation gave stereoselectively the alcohol **4** by simultaneous formation of a new olefin group. Benzylation of **4** gave **5**, ¹⁰ which was submitted to Ferrier reaction with $HgCl₂¹¹$ to give the cyclohexanone **6**. The $[4 + 2]$ cycloaddition of **7**, which was derived from **6** by dehydration, with the butadiene **9** did not proceed because of the steric repulsion. Therefore, **6** was epimerized at C2 and dehydrated to the isomer **8**. ¹⁰ This cycloaddition with **9** in the presence of 2,6-ditert-butyl-4-methylphenol (DBMP) proceeded from the β-face of **8** regio- and stereoselectively as expected.⁵ This highly stereoselective reaction gave a labile adduct, which upon acidic oxidation was transformed to the α , β-unsaturated ketone 10.¹⁰ The tandem Michael-Dieckmann type reaction¹² of 10 with the isobenzofuranone **11**¹³ gave the tetracyclic compound **12**, which was in turn aromatized to 13^{10} in high yield. The struc-

Scheme 2. a) TBSCl/Py, 2 h, 93% b) DMSO, DCC, Py-TFA/Et₂O, 70 min, 97% c) [Ph₃PCH₃]Br, *n*-BuLi/THF, -78 °C - rt, 1 h, 91% d) 1%HCl-MeOH, 10 min, 93% e) PBu₃/THF, 1 h, 90% f) BH₃•THF/THF, 0 - 45 °C, 1 h, then H

Copyright © 2000 The Chemical Society of Japan

Scheme 3. a) BBr₃/CH₂Cl₂. -78 °C, 15 min b) H₂, Pd-black, (Boc)₂O, TEA/dioxane-H₂O, 1 h, 2steps 92% c) TMSCHN₂Cl₂, L₂. NeOH, 2 h, 72% d) Br₂, (Bu₃Sn)₂O, MS-4A/CH₂Cl₂, -78 °C, 15 min, 85% e) Des

tures of **10** and **13** were reasonably confirmed by NMR studies.

After selective de- O -benzylation of 13 with BBr₃ (Scheme 3), the alcohol was converted into **14** by exchange of the *N*-protecting group followed by *O*-methylation of the enol. The direct oxidation of **14** gave no desired products **17** and **17'**. Treatment of 14 with Br₂ gave stereoselectively the bromide **15**. ¹⁰ The opening of the pyran ring was examined under a variety of conditions, but in vain. Dess-Martin oxidation of **15** was followed by treatment with Zn in AcOH¹⁴ to provide the keto-alcohol **16**¹⁰ with migration of the resulting double bond. This was oxidized to a mixture of the enols **17** and **17'**. Though the process suffered from the loss of the valuable asymmetry at C12a, it was expected that the mixture would be a useful intermediate provided that epoxidation could be achieved at the α face. The mixture was submitted to epoxidation using dimethyldioxirane with the chiral cyclic borane,¹⁵ where the reaction occurred from the α-face as expected, affording predominantly the C12a alcohol **18**. ¹⁰ This was transformed to the nitrile **19**¹⁰ by our newly developed method. Hydrolysis of **19** to give the amide with concomitant removal of the *N*-Boc group was followed by *N*-dimethylation to produce **20**. De-*O*-methylation gave anhydrotetracycline (21) ,¹⁰ which was identical with a naturally derived sample in all respects.6

The final stage was to introduce stereoselectively the hydroxy group into the C6 position according to the reported procedures.⁶ By photooxidation of **21**, the peroxide **22** was obtained. The hydrogenolysis of **22** on Pd-C gave no significant product,⁴ while the desired reduction proceeded smoothly on Pt black to give (−)-tetracycline (**23**) in a fairly good yield, which was neutralized with HCl in MeOH to give the hydrochloride.¹⁰ This was identical with the hydrochloride of natural $(-)$ -tetracycline in all respects,¹⁶ completing the first total synthesis.

This work was financially supported by Grant-in-Aid for Specially Promoted Research from the Ministry of Education, Science, Sports and Culture.

References and Notes
1 R. B. Woodward.

1 R. B. Woodward, *Pure Appl. Chem*., **6**, 561 (1963).

- 2 L. H. Conover, K. Butler, J. D. Johnston, J. J. Korst, and R. B. Woodward*, J. Am. Chem. Soc*., **84**, 3222 (1962).
- 3 H. Muxfeldt, G. Hardtmann, F. Kathawala, E. Vedejs, and J. B. Mooberry*, J. Am. Chem. Soc*., **90**, 6534 (1968).
- 4 G. Stork, J. J. La Clair, P. Spargo, R. P. Nargund, and N. Totah, *J. Am. Chem. Soc*., **118**, 5304 (1996), and references cited therein.
- 5 R. Gleiter and M. C. Böhm, *Pure Appl. Chem*., **55**, 237 (1983).
- 6 H. H. Wasserman, T.-J. Lu, and A. I. Scott, *J. Am. Chem. Soc*., **108**, 4237 (1986).
- 7 A. I. Gurevich, M. G. Karapetyan, M. N. Kolosov, V. G. Korobko, V. V. Onoprienko, S. A. Popravko, and M. M. Shemyakin, *Tetrahedron Lett*., **1967**, 131 (1967).
- 8 J.-C. Jacquinet, M. Petitou, P. Duchaussoy, I. Lederman, J. Choay, G. Torri, and P. Sinay, *Carbohydr. Res*., **130**, 221 (1984).
- 9 P. A. Grieco, S. Gilman, and M. Nishizawa, *J. Org. Chem.,* **41**,1485 (1976), and references cited therein.
- 10 Selected data for key compounds: Optical rotations (22 °C) and ¹H-NMR spectra (*J* in Hz; 400, 500 and 600 MHz) were measured in CHCl₃ and CDCl₃, respectively, unless otherwise noted. **5**: $[\alpha]_D$ +61°(*c* 1.0); ¹H-NMR δ 3.03 (1H, ddd, *J* = 5, 5 and 8, H-4), 4.48 (1H, s, H-6), 4.66 (1H, s, H'-6), **8**: mp 75 °C; [α]_D +50°(*c* 1.0); ¹H-NMR δ 2.57 (1H, d, *J* = 9, H-2), 4.02 (1H, dd, *J* = 8 and 9, H-3), 6.10 (1H, dd, $J = 2$ and 10, H-6), 6.76 (1H, br d, $J = 10$, H-5), 10: mp 173 °C; $[\alpha]_D$ -16°(*c* 1.0); ¹H-NMR δ 2.15 (1H, br d, *J* = 12 and 18, H_β-5), 2.56 (1H, ddd, $J = 6$, 6 and 18, H_q-5), 3.78 (1H, ddd, $J = 18$ 10, 10 and 10, H-4), 3.87 (1H, dd, *J* = 10 and 10, H-3), **13**: mp 204

°C(dec.); [α]_D +397°(*c* 0.33); ¹H-NMR (C₅D₅N) δ 2.24 (3H, s, Me-6), 3.04 (1H, ddd, $J = 4$, 10 and 14, H-4a), 4.40 (1H, ddd, $J = 10$, 10 and 10, H-4), 4.46 (1H, dd, $J = 10$ and 10, H-3), **15**: $[\alpha]_D$ -99°(*c* 0.46); ¹H-NMR δ 2.74 (1H, ddd, $J = 4$, 10 and 10, H-4a), 3.57 (1H, dd, $J = 7$ and 9, CH-2), 4.08 (1H, dd, $J = 7$ and 7, CH'-2), 16: $[\alpha]_D$ -93°(*c* 0.27); 1H-NMR δ 2.92 (1H, dddd, *J* = 2, 4, 5 and 11, H-4a), 4.20 (1H, d, *J* = 4, H-12a), 4.46 (1H, dd, *J* = 6 and 12, CH-2), 4.54 (1H, dd, *J* = 8 and 12, CH'-2), **18**: [α]_D -106°(*c* 0.35, MeOH); ¹H-NMR (CD₃OD) δ 2.66 (1H, ddd, $J = 3$, $\overline{4}$ and 11, H-4a), 4.04 (1H, d, *J* = 12, H-4), 9.75 (1H, s, CHO), **19**: [α]_D -360°(*c* 0.12); ¹H-NMR δ 2.79 (1H, dd, *J* = 5 and 13, H-4a), 4.54 (1H, d, *J* = 6, H-4); IR (neat) 2204 cm⁻¹, **21**: [α]_D -86°(*c* 0.40, 0.1 M HCl); ¹H-NMR δ 2.47 (9H, s, N-Me and Me-6), 3.33 (1H, d, *J* = 11, H-4), **23 ·**HCl: [α]_D -261°(*c* 0.50, 0.1 M HCl); ¹H-NMR (CD₃OD-DCl/D₂O) δ 1.65 (3H, s, Me-6), 1.93 (1H, ddd, $J = 11$, 13 and 13, H_B-5), 2.25 (1H, ddd, $J = 3$, 5 and 13, H_{α} -5), 3.04 (6H, s, N-Me).
- 11 R. J. Ferrier, *J. Chem. Soc., Perkin Trans. 1*, **1979**, 1455 (1979).
- 12 K. Tatsuta, T. Yamazaki, T. Mase, and T. Yoshimoto, *Tetrahedron*
- *Lett*., **39**, 1771 (1998), and references cited therein. 13 S. Kushner, J. Morton, II, J. H. Boothe, and J. H. Williams, *J. Am. Chem. Soc*., **74**, 3710 (1952).
-
- 14 L. F. Fieser and R. Ettorre, *J. Am. Chem. Soc*., **75**, 1700 (1953). 15 E. J. Corey, R. Imwinkelried, S. Pikul, and Y. B. Xiang, *J. Am. Chem. Soc*., **111**, 5493 (1989).
- 16 The authentic sample was prepared by purification of commercially available sample.